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Complete temporal mode characterization of non-Gaussian states by a dual homodyne measurement
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Optical quantum states defined in temporal modes, especially non-Gaussian states, such as photon-number
states, play an important role in quantum computing schemes. In general, the temporal mode structures of these
states are characterized by one or more complex functions called temporal mode functions (TMFs). Although
we can calculate the TMF theoretically in some cases, experimental estimation of a TMF is more advantageous
to utilize the states with high purity. In this paper, we propose a method to estimate complex TMFs. This method
can be applied not only to arbitrary single temporal mode non-Gaussian states, but also to two temporal mode
states containing two photons. This method is implemented by continuous-wave dual homodyne measurement
and does not need prior information of the target states nor state reconstruction procedure. We demonstrate this
method by analyzing several experimentally created non-Gaussian states.

DOI: 10.1103/PhysRevA.99.033832

I. INTRODUCTION

Quantum states of light are a promising resource of quan-
tum computation [1–3] and quantum communication [4,5].
They are characterized by optical modes, such as polarization,
spatial, and temporal modes. Among these modes, temporal
modes have a lot of flexibility thus are useful for many
applications. One prominent example is temporal mode mul-
tiplexing of quantum states to realize large-scale fault-tolerant
quantum computation [3,6–11]. In this scheme, grasping tem-
poral mode structures of quantum states is essential for basic
operations, such as interference and measurement. Therefore,
a methodology to characterize the states’ temporal mode is in
great demand.

A temporal mode f is characterized by a complex function
f (t ), called the temporal mode function (TMF). For example,
single-photon states in a temporal mode f are given by |1 f 〉 ≡
â†

f |0̃〉, where |0̃〉 is a multimode vacuum state and â†
f ≡∫

dt f (t )â†(t ) is a creation operator of temporal mode f . Such
non-Gaussian states, which can be used as ancillary states or
a quantum information carrier in quantum computation, are
the main interest of temporal mode analysis. Although we
can calculate the TMFs theoretically in some state creation
schemes [12], imperfection of experiment varies their actual
forms. This mismatch leads to extra photon loss in useful
applications. Therefore, experimental estimation of the TMFs
of optical quantum states is essential to utilize the states with
high purity.

So far, single temporal mode states, the states described by
one temporal mode, have been actively analyzed experimen-
tally. Especially, homodyne and heterodyne measurements are
powerful tools both in continuous-wave (cw) and in pulse
regimes. In Refs. [13,14], the TMFs are estimated by shaping
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the temporal modes of pulsed local oscillator (LO) beams for
homodyne measurement. On the other hand, in the cw regime,
temporal modes of LO beams are fixed, and the TMFs can be
estimated by posteriorly processing the measurement results.
Actually, the TMFs of single-photon states and Schrödinger’s
cat states are estimated [15–17] by applying principal com-
ponent analysis (PCA) [18], which decomposes correlated
variables into uncorrelated variables, to cw homodyne signals.
This method does not require prior information of the target
states and can access the TMFs without a state reconstruc-
tion algorithm. We can apply this method to arbitrary single
temporal mode non-Gaussian states. However, their TMFs
are limited to real functions because the PCA gives us only
real functions. Reference [19] estimates complex TMFs of
single-photon states by constructing what they call the tem-
poral density matrix via cw heterodyne tomography. In the
case of general non-Gaussian states, however, we need to
consider a larger size density matrix having higher-photon
number components, and estimation of the TMFs is not trivial.
On top of that, we need several LO beams having different
frequencies for the construction of a temporal density matrix.

In this paper, we propose a method that we call the
complex-number PCA (CPCA); estimation of complex TMFs
by applying the PCA to complex variables given by cw dual
homodyne measurement. Figure 1 is a conceptual diagram
of our method. The CPCA can deal with arbitrary single
temporal mode non-Gaussian states characterized by complex
TMFs. On top of that, it can be applied to dual temporal mode
states containing two photons â†

f1
â†

f2
|0̃〉 to estimate the com-

plex TMFs f1(t ), f2(t ). These states are the simplest example
of multitemporal mode states, which play an important role in
useful applications [20–22]. Our method possibly opens a way
to the TMF estimation of general multitemporal mode states.
Like the previous PCA method, the CPCA needs no prior
information, state reconstruction procedure, nor LO beams
having different frequencies. The simplicity and capability of
our method to characterize a wide range of quantum states
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FIG. 1. Conceptual diagram. The input state is a non-Gaussian
state in unknown temporal modes. We estimate the temporal mode
structure by measuring conjugate quadratures X̂ , P̂ by dual homo-
dyne measurement and processing the data by the CPCA.

would lead to useful applications not only in state creation ex-
periments, but also in quantum communication and quantum
computation schemes [1–5]. We experimentally demonstrate
this method using several non-Gaussian states characterized
by complex TMFs.

This paper is organized as follows. In Sec. II A, we define
temporal modes of light and optical single and multitemporal
mode quantum states. In Sec. II B, we review the previous
estimation of real TMFs by the PCA. In Sec. II C, we discuss
applying the PCA to cw dual homodyne measurement signals.
In Sec. II D, we discuss how to analyze two-photon states
â†

f1
â†

f2
|0̃〉. In Sec. II E, we discuss how photon loss affects our

analysis. In Sec. II F, we summarize the application range of
the CPCA. In Sec. III A, we review a creation method of non-
Gaussian states. In Sec. III B, we explain the experimental
setup. In Sec. III C, we show the experimentally estimated
TMFs of several non-Gaussian states.

II. THEORY

A. Definition of temporal modes

We introduce optical TMFs and basic operators. A tempo-
ral mode f is characterized by time spectrum f (t ) called a
TMF in which quantum states can be defined. The TMFs are
complex functions in general. We define the instantaneous an-
nihilation and creation operators â(t ) and â†(t ) which satisfy
the commutation relation [â(t ), â†(t ′)] = δ(t − t ′) where δ(t )
is the Dirac-δ function. Then, photon annihilation and creation
in a temporal mode f are described by operators given by

â f ≡
∫

dt f ∗(t )â(t ), â†
f ≡

∫
dt f (t )â†(t ). (1)

Suppose the complex function f (t ) satisfies
∫

dt | f (t )|2 = 1
so that these operators satisfy [â f , â†

f ] = 1. In general,

[
â f j , â†

fk

] =
∫

dt
∫

dt ′ f ∗
j (t ) fk (t ′)[â(t ), â†(t ′)]

=
∫

dt f ∗
j (t ) fk (t )

≡ 〈 f j, fk〉 . (2)

Therefore, the inner product of the TMFs gives the commuta-
tion relation of temporal modes.

In experiments, we often treat physical quantities in finite
and discrete time. For that, we define time-bin modes {t j}M

j=1
which divide time-interval [0, T ] into small M time bins.
Their TMFs are given by

t j (t ) =
{√

M/T [( j − 1)T/M � t < jT/M],

0 (otherwise).
(3)

In many cases, it is useful to use annihilation and creation
operators of time-bin modes,

ât j =
∫

dt t j (t )â(t ), â†
t j

=
∫

dt t j (t )â†(t ), (4)

instead of instantaneous operators â(t ), â†(t ). Their commu-
tation relation is given by [ât j , â†

tk ] = δ j,k .
When f (t ) has finite values only in [0, T ] and varies slowly

during the time-change T/M, it is well approximated as

f (t ) ≈
M∑

j=1

f [t j]t j (t ), (5)

where f [t j] ≡ √
T/M f ( jT/M ). Strictly speaking, both sides

of Eq. (5) are not the same, but in the rest of this paper, we use
an equal sign in the following for convenience:

f (t ) =
M∑

j=1

f [t j]t j (t ). (6)

Then, by using time-bin modes, annihilation and creation
operators of temporal mode f are given by

â f =
M∑

j=1

f ∗[t j]ât j , â†
f =

M∑
j=1

f [t j]â
†
t j
. (7)

Their commutation relation is given by

[
â f j , â†

fk

] =
M∑

l=1

f ∗
j (tl ) fk (tl ). (8)

In this way, we can describe temporal mode f both in infinite-
continuous time and in finite-discrete time.

When quantum states are described only by creation op-
erators of temporal mode f and background vacuum state
|0̃〉, we call them single temporal mode states in temporal
mode f . Photon-number states |n f 〉 ≡ 1√

n!
(â†

f )n |0̃〉 are the
examples of such states, and they are orthogonal complete
bases of single temporal mode states in temporal mode f .
On the other hand, we need more than one temporal mode
to describe multitemporal mode states. The basic examples
are multitemporal mode Fock states â†

f1
â†

f2
· · · â†

fn
|0̃〉. We un-

derline that TMFs { f j (t )}n
j=1 are arbitrary complex functions

and not orthogonal to each other in general, thus we cannot
describe the states as |1 f1 , 1 f2 , . . . , 1 fn〉 except for the special
case when TMFs{ f j (t )}n

j=1 are orthogonal functions. Our goal
is to estimate the TMFs of those states by experimentally
deciding the discrete values { f [t j]}M

j=1 in Eq. (6).

B. Estimation of real TMFs

Our goal is to estimate complex TMFs f (t ). In this section,
however, we concentrate on the case where f (t ) are real
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functions. Such functions can be estimated by applying the
PCA to quadratures as introduced in Refs. [15–17]. We extend
this method to the complex number in Sec. II C.

1. Data acquisition

When we try to estimate f (t ), one piece of useful infor-
mation is quadrature values. The quadratures of instantaneous
modes are defined by

x̂θ (t ) ≡ â(t )e−iθ + â†(t )eiθ

√
2

. (9)

An ideal homodyne detector can measure the quadrature x̂θ (t )
using a cw coherent beam called LO having a phase θ . The
quadratures of a temporal mode f are given by

x̂ f ,θ ≡ â f e−iθ + â†
f eiθ

√
2

=
∫

dt f (t )x̂θ (t ). (10)

Note that f (t ) is a real function here. We can obtain x̂ f ,θ by
integrating the results of an ideal cw homodyne measurement
with a weight f (t ). In the rest of the paper, we omit the suffix
θ except when it is important.

In the PCA, the mode conversion of quadratures given by
Eq. (10) plays a central role, thus we need a precise value
of x̂(t ). Unfortunately, homodyne detectors in laboratories are
not ideal, preventing us from knowing the exact values of x̂(t ).
When the impulse response of the measurement system is
given by g(t ), cw homodyne measurement signals are given
by (under proper normalization)

x̂′(t ) =
∫

dt ′x̂(t ′)g(t − t ′). (11)

In the following, we assume g(t ) is mainly determined by
the low-pass filter effect due to the finite bandwidth of the
homodyne detector. Then, quadratures of temporal mode f
we can obtain are given by

x̂′
f ≡

∫
dt f (t )x̂′(t ) =

∫
dt x̂(t )

∫
dt ′ f (t ′)g(t ′ − t ). (12)

When g(t ) is narrow enough compared to f (t ), that is, the
homodyne detector is broadband enough compared to the
bandwidth of F (ω) ≡ ∫

dt f (t )e−iωt , we can regard g(t ) as
a δ-function δ(t ). It follows that:

x̂′
f =

∫
dt x̂(t ) f (t ) = x̂ f . (13)

Therefore, even when our homodyne detectors are not ideal,
we can neglect the imperfection if they are broadband enough
compared to F (ω). In the following, we express x̂′(t ) and x̂′

f
just as x̂(t ) and x̂ f for convenience, thus x̂(t ) and x̂ f means
measured and calculated values by using homodyne detectors
having finite but broad enough bandwidth.

In experiments, we measure quadrature values at an appro-
priate sampling rate during a reasonable time span. Thus, we
have to treat finite and discrete time. Let us assume f (t ) has
finite values only in time [0, T ]. Then, we measure quadrature
values M times at the same interval during [0, T ]. Here, the
sampling rate M/T should be large enough that f (t ) and x̂(t )
vary slowly in time-change T/M. Note that the homodyne
measurement is an observation in a system rotating at the

carrier frequency of the LO beam, thus the time changes
in f (t ) and x̂(t ) are not so fast. In this situation, time-bin
modes {t j}M

j=1 introduced in Eq. (3) are useful. From above
and Eq. (10), the quadratures of time-bin modes are given by

x̂t j =
∫

dt t j (t )x̂(t ) ≈
√

T/Mx̂( jT/M ). (14)

Similar to Eq. (6), we use an equal sign in the following:

x̂t j =
√

T/Mx̂( jT/M ). (15)

Thus, we can determine x̂t j by a finite sampling rate homodyne
measurement. From Eq. (7), quadratures of temporal mode f
are given by

x̂ f =
M∑

j=1

f [t j]x̂t j . (16)

This equation corresponds to Eq. (10). Like above, we can
define and measure quadratures both in infinite-continuous
time and in finite-discrete time.

2. Principal component analysis

The PCA [18] is an analysis procedure to convert corre-
lated variables into a set of uncorrelated variables called prin-
cipal components. In the PCA, the first principal component
has the largest variance in the whole space, and the following
components are decided to have the largest variance in the
subspace which is orthogonal to the components decided
before.

In quantum optics, the PCA has been applied to the quadra-
tures {x̂t j }M

j=1 to estimate real TMFs f (t ) of non-Gaussian
states [15–17]. The variables {x̂t j }M

j=1 are correlated because
autocorrelation functions 〈x̂t j x̂tk 〉 are not zero in general when
j 	= k. The PCA is a procedure to find uncorrelated variables
{x̂e j }M

j=1 satisfying

〈
x̂e j x̂ek

〉 = 〈
x̂2

e j

〉
δ j,k, (17)〈

x̂2
e1

〉
�

〈
x̂2

e2

〉
� · · · �

〈
x̂2

eM

〉
. (18)

The functions {e j (t )}M
j=1 have important information about the

TMFs we want to estimate.
For example, when we apply the PCA to single-photon

states â†
f |0̃〉, we get 〈x̂2

e1
〉 = 3/2, 〈x̂2

e2
〉 = · · · = 〈x̂2

eM
〉 = 1/2,

and f (t ) = e1(t ) [16]. This is because single-photon states
have three times larger quadrature variance than that of vac-
uum states in uncorrelated modes. Generally, there exists a
certain phase where single temporal mode states, typically
non-Gaussian states, have larger variance of quadratures than
other uncorrelated vacuum modes. Therefore, e1(t ) is ex-
pected to be the TMF of the single temporal mode states if
we choose a proper phase of LO.

We can carry out the PCA by introducing a matrix Vt given
by

Vt =

⎛
⎜⎜⎜⎝

〈
x̂2

t1

〉 〈
x̂t1 x̂t2

〉 · · · 〈
x̂t1 x̂tM

〉〈
x̂t2 x̂t1

〉 〈
x̂2

t2

〉 · · · 〈
x̂t2 x̂tM

〉
...

...
. . .

...〈
x̂tM x̂t1

〉 〈
x̂tM x̂t2

〉 · · · 〈x̂2
tM

〉

⎞
⎟⎟⎟⎠. (19)
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We can obtain this matrix via cw homodyne measurement.
When we measure a target state with a sampling rate M/T dur-
ing [0, T ], we get a set of quadratures {x̂t j }M

j=1. By repeating
the same measurement, we can calculate the average values
〈x̂ j x̂k〉 . Vt is a real symmetrical matrix thus diagonalized as
EVt ET by a certain orthogonal matrix E . In this case, such a
matrix E is given by

E =

⎛
⎜⎜⎝

e1[t1] e1[t2] · · · e1[tM]
e2[t1] e2[t2] · · · e2[tM]

...
...

. . .
...

eM[t1] eM[t2] · · · eM[tM]

⎞
⎟⎟⎠. (20)

Why EVt ET is diagonalized is shown as follows. EVt ET is
given by

EVt E
T =

⎛
⎜⎜⎜⎝

〈
x̂2

e1

〉 〈
x̂e1 x̂e2

〉 · · · 〈
x̂e1 x̂eM

〉〈
x̂e2 x̂e1

〉 〈
x̂2

e2

〉 · · · 〈
x̂e2 x̂eM

〉
...

...
. . .

...〈
x̂eM x̂e1

〉 〈
x̂eM x̂e2

〉 · · · 〈
x̂2

eM

〉

⎞
⎟⎟⎟⎠, (21)

where we use a relation that follows from Eq. (16),

〈
x̂e j x̂ek

〉 =
M∑

l,m=1

e j[tl ]ek[tm]
〈
x̂tl x̂tm

〉
. (22)

From Eq. (18), the off-diagonal terms of Eq. (21) are zero,

EVt E
T =

⎛
⎜⎜⎜⎝

〈
x̂2

e1

〉 〈
x̂2

e2

〉
0

. . .
0

〈
x̂2

eM

〉

⎞
⎟⎟⎟⎠

≡ diag
[ 〈

x̂2
e1

〉
,
〈
x̂2

e2

〉
, . . . ,

〈
x̂2

eM

〉 ]
. (23)

In this way, we can obtain eigenfunctions {e j (t )}M
j=1 by getting

matrix Vt via cw homodyne measurement and calculating a
matrix E which diagonalizes Vt . Note that due to the orthogo-
nality of E , the eigenfunctions {e j (t )}M

j=1 are orthogonal,

〈e j, ek〉 =
M∑

l=1

e j[tl ] ek[tl ] = δ j,k, 1 � j, k � M.

(24)

Especially, in single temporal mode state analysis, TMF f (t )
is given by

f (t ) = e1(t ) =
M∑

j=1

e1[t j]t j (t ) =
M∑

j=1

E1, jt j (t ) . (25)

The PCA has been applied to experimentally cre-
ated non-Gaussian states, such as single-photon states and
Schrödinger’s cat states in a single temporal mode [15–17].
In this method, however, the eigenfunctions {e j (t )}M

j=1 are
limited to real functions because they are given by a linear
combination of real functions {t j (t )}M

j=1 by orthogonal matrix
E . Therefore, this method is not suitable for the quantum
states which have complex TMFs. In the next section, we
extend the PCA to the estimation of complex TMFs.

FIG. 2. Schematic of the CPCA. For every single-shot measure-
ment, we take the quadrature values M times in [0, T ]. We convert
the complex variable β̂t j into uncorrelated variables by the PCA
where we utilize the correlation 〈β̂†

t j
β̂tk 〉 calculated from N-frame

data. From the eigenfunctions and eigenvalues, we can estimate the
TMFs of the input states.

C. Estimation of complex TMFs

1. Dual homodyne measurement

In the previous section, eigenfunctions {e j (t )}M
j=1 are lim-

ited to real functions because we apply the PCA to quadra-
tures {x̂t j }M

j=1, which are real numbers. In order to estimate
complex TMFs, we have to apply the PCA to complex vari-
ables. cw dual-homodyne measurement and cw heterodyne
measurement give such variables, measuring the conjugate
quadratures x̂θ (t ) and x̂θ+(π/2)(t ) simultaneously. Actually,
in Ref. [19], complex TMFs of single-photon states are es-
timated by cw heterodyne measurement using several LOs
having different frequencies. In Ref. [19], however, an opti-
mization algorithm is adopted, requiring a heavier calculation
than the PCA. In this section, we discuss applying the PCA
to cw dual homodyne measurement signals. Dual homodyne
can be implemented by LOs having one frequency, unlike the
heterodyne method used in Ref. [19].

To begin with, we explain the cw dual homodyne mea-
surement. Figure 2 is a conceptual diagram of the cw dual
homodyne measurement. In this measurement, the target state
|�〉 [quadratures x̂θ (t )] is divided into two outputs by a 50:50
beam splitter. Another input of the beam splitter is a vacuum
state |0〉 [quadratures x̂(v)

θ (t )]. The two outputs are measured
by cw homodyne detectors by using orthogonal phases of
LOs. The measurement operators of these homodynes are
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given by

X̂t j = x̂t j − x̂(v)
t j√

2
, P̂t j = p̂t j + p̂(v)

t j√
2

, (26)

where we put x̂ ≡ x̂θ=0, p̂ ≡ x̂θ=π/2. We treat these values as
a complex number β̂t j given by

β̂t j ≡ X̂t j + iP̂t j = ât j − â†(v)
t j

. (27)

This value corresponds to the complex amplitude of state
|�〉. The vacuum term â†(v)

t j
means the uncertainty of the

simultaneous measurement of x̂t j and p̂t j . We define a similar
value about temporal mode f as below,

β̂ f ≡
M∑

j=1

f ∗[t j] β̂t j = â f − â†(v)
f ∗ , (28)

β̂
†
f ≡

M∑
j=1

f [t j] β̂†
t j

= â†
f − â(v)

f ∗ . (29)

Note that f (t ) is a complex function, no longer a real function,
such as in Sec. II B. The distribution of β̂ f j is given by the Q
function of the state in the mode f [23,24].

2. Complex-number principal component analysis

Next, let us discuss applying the PCA to the complex
variables {β̂t j }M

j=1. This process converts correlated variables

{β̂t j }M
j=1 into uncorrelated variables {β̂e j }M

j=1 which satisfy

〈
β̂†

e j
β̂ek

〉 = 〈
β̂†

e j
β̂e j

〉
δ j,k, (30)〈

β̂†
e1
β̂e1

〉
�

〈
β̂†

e2
β̂e2

〉
� · · · �

〈
β̂†

eM
β̂eM

〉
. (31)

Let us confirm the physical meaning of the value 〈β̂†
f β̂ f 〉.

Equations (28) and (29) lead to

β̂
†
f β̂ f = â†

f â f + â†(v)
f ∗ â(v)

f ∗ + 1 − â†
f â†(v)

f ∗ − â f â(v)
f ∗ . (32)

Because the cw dual homodyne measurement has two-mode
input |�〉 |0v〉, the average value is given by

〈β̂†
f β̂ f 〉 = 〈0v| 〈�| β̂†

f β̂ f |�〉 |0v〉
= 〈�| â†

f â f |�〉 + 1

≡ n̄ f + 1. (33)

Therefore, 〈β̂†
f β̂ f 〉 shows the average photon number state

|�〉 has in a temporal mode f . For example, when applying
the PCA to single-photon states â†

f |0̃〉, we get n̄e1 = 1, n̄e2 =
· · · = n̄eM = 0, and e1(t ) = f (t ). Generally, when we analyze
single temporal mode states, only n̄e1 is larger than zero, and
e1(t ) = f (t ). To distinguish from the previous PCA, we call
this method the CPCA in this paper.

We can carry out the CPCA by introducing a matrix Ct

given by

Ct =

⎛
⎜⎜⎜⎜⎝

〈
β̂

†
t1 β̂t1

〉 〈
β̂

†
t1 β̂t2

〉 · · · 〈
β̂

†
t1 β̂tM

〉
〈
β̂

†
t2 β̂t1

〉 〈
β̂

†
t2 β̂t2

〉 · · · 〈
β̂

†
t2 β̂tM

〉
...

...
. . .

...〈
β̂

†
tM β̂t1

〉 〈
β̂

†
tM β̂t2

〉 · · · 〈
β̂

†
tM β̂tM

〉

⎞
⎟⎟⎟⎟⎠. (34)

We can obtain this matrix via a cw dual homodyne measure-
ment. We measure a target state with a sampling rate M/T
during [0, T ] to get a set of values {β̂t j }M

j=1. By repeating the

same measurement, we can calculate 〈β̂†
t j
β̂tk 〉 . Ct is a Hermite

matrix thus diagonalized by a unitary matrix E as follows:

E =

⎛
⎜⎜⎝

e1[t1] e1[t2] · · · e1[tM]
e2[t1] e2[t2] · · · e2[tM]

...
...

. . .
...

eM[t1] eM[t2] · · · eM[tM]

⎞
⎟⎟⎠, (35)

ECt E
† = diag

[ 〈
β̂†

e1
β̂e1

〉
,
〈
β̂†

e2
β̂e2

〉
, . . . ,

〈
β̂†

eM
β̂eM

〉 ]
= diag

[
n̄e1 + 1, n̄e2 + 1, . . . , n̄eM + 1

]
. (36)

In the diagonalization of Ct , we use a relation derived from
Eqs. (28) and (29),

〈
β̂†

e j
β̂ek

〉 =
M∑

l,m=1

e j[tl ]e
∗
k [tm]

〈
β̂†

tl β̂tm

〉
. (37)

Like the PCA, we can obtain eigenfunctions {e j (t )}M
j=1 and

average photon-numbers {n̄e j }M
j=1 through the diagonalizing

process. The important thing is that eigenfunctions {e j (t )}M
j=1

are complex functions because the matrix E is unitary. It also
follows:

〈e j, ek〉 = δ j,k, 1 � j, k � M. (38)

In single temporal mode state analysis, the TMF f (t ) is given
by

f (t ) = e1(t ) =
M∑

j=1

e1[t j], t j (t ) =
M∑

j=1

E1, jt j (t ). (39)

Like above, we can estimate the complex TMF of single
temporal mode states via the CPCA.

D. Dual temporal mode state analysis

In the previous section, we discussed single temporal mode
state analysis by the CPCA. However, useful states are often
defined in multitemporal modes. For example, some quantum
error correction codes use multimode states to protect fragile
quantum information [20–22]. Therefore, we should develop
mode characterization tools for multimode states. As a simple
case, we treat two photons distributed in two temporal modes.
As shown in Ref. [8], such states always can be given by

|�2〉 = 1√
1 + |〈 f1, f2〉|2

â†
f1

â†
f2

|0̃〉 , (40)

where f1(t ), f2(t ) are complex functions not orthogonal in
general. We will characterize the temporal mode structures
of |�2〉 by estimating f1(t ) and f2(t ). In the following, we
assume f1(t ) 	= f2(t ).

When we apply the CPCA to |�2〉 , n̄e2 is no longer zero
but has a positive value. Thus, e1 and e2 have the information
of the temporal mode structures of |�2〉. From Eq. (38), modes
e1 and e2 are orthogonal. Note that in most cases e1, e2 are not
the same modes as f1, f2 because f1, f2 are not orthogonal in
general. The two photons in |�2〉 are distributed in e1, e2, thus
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|�2〉 can be described by

|�2〉 = α
∣∣2e1 , 0e2

〉 + β
∣∣1e1 , 1e2

〉 + γ
∣∣0e1 , 2e2

〉
=

(
α√
2

â† 2
e1

+ β â†
e1

â†
e2

+ γ√
2

â† 2
e2

)
|0̃〉 , (41)

where α ∈ R and β, γ ∈ C satisfy α2 + |β|2 + |γ |2 = 1. The
quadratic polynomial of the creation operators in Eq. (41) can
be decomposed into a product of linear polynomials,

|�2〉 =
(
d11â†

e1
+ d12â†

e2

)(
d21â†

e1
+ d22â†

e2

)
√

1 + |d∗
11d21 + d∗

12d22|2
|0̃〉 , (42)

where |d11|2 + |d12|2 = 1, |d21|2 + |d22|2 = 1. From Eq. (1),
we can use the next relation for arbitrary normalized orthogo-
nal functions g1(t ) and g2(t ),

η1â†
g1

+ η2â†
g2

= â†
η1g1+η2g2

(|η1|2 + |η2|2 = 1). (43)

Thus, we can get

|�2〉 = 1√
1 + |d∗

11d21 + d∗
12d22|2

â†
d11e1+d12e2

â†
d21e1+d22e2

|0̃〉 .

(44)

This is the same form as Eq. (40), thus f1(t ), f2(t ) are given
by (

f1(t )
f2(t )

)
=

(
d11 d12

d21 d22

)(
e1(t )
e2(t )

)
≡ D

(
e1(t )
e2(t )

)
. (45)

Our goal is to calculate f1(t ) and f2(t ) experimentally. We can
get e1(t ), e2(t ) by the CPCA, thus we express the matrix D by
experimentally obtainable values.

By assuming d11, d21 ∈ R, we can determine D uniquely
from α, β, and γ . From Eqs. (33) and (41), these values
should satisfy

n̄e1 = 〈�2|β̂†
e1
β̂e1 |�2〉 − 1 = 2α2 + |β|2,

n̄e2 = 〈�2|β̂†
e2
β̂e2 |�2〉 − 1 = |β|2 + 2|γ |2, (46)

0 = 〈�2|β̂†
e1
β̂e2 |�2〉 =

√
2
(
αβ + β∗γ

)
.

Thus, when n̄1 > n̄2 > 0,

α =
√

n̄1

2
, β = 0, |γ | =

√
n̄2

2
. (47)

When n̄1 = n̄2 = 1,

α = |γ | =
√

1 − |β|2
2

, 2 arg β = arg γ ± π. (48)

There still exists uncertainty among α, β, and γ . Therefore,
we cannot decide D only from the CPCA results.

Interestingly, we can overcome this problem by introduc-
ing fourth-order moments. First, we utilize

qeiθ ≡ 〈�2|β̂†2
e1

β̂2
e2
|�2〉 = 2αγ (q � 0). (49)

You can easily obtain this value experimentally because you
have the data set {β̂t j }M

j=1 and eigenfunctions e1(t ), e2(t ) to

calculate the values β̂†
e1
, β̂e2 using Eqs. (28) and (29). Equa-

tion (49) leads to

2α|γ | = q, arg γ = θ. (50)

From Eqs. (47), (48), and (50), we can determine α, β, and
γ , thus the matrix D. When n̄1 > n̄2 > 0,

α =
√

n̄1

2
, β = 0, γ =

√
n̄2

2
eiθ (51)

D = 1√
n̄1/2

e1 + n̄1/2
e2

(
n̄1/4

e1
in̄1/4

e2
ei(θ/2)

n̄1/4
e1

−in̄1/4
e2

ei(θ/2)

)
. (52)

When n̄1 = n̄2 = 1,

α =
√

q

2
, β = ±i

√
1 − qei(θ/2), γ =

√
q

2
eiθ

(53)

D =
(√

1 + √
1 − q ∓i

√
1 − √

1 − qei(θ/2)√
1 − √

1 − q ±i
√

1 + √
1 − qei(θ/2)

)
. (54)

The latter case corresponds to the situation when f1 and f2

are orthogonal because the columns of D are orthogonal.
In this case, the phase of β is still not unique. We can
determine the phase by using another fourth-order moment
〈�2|β̂†2

e1
β̂e1 β̂e2 |�2〉 = 2αβ, which reveals arg β.

In this way, we can characterize the temporal mode struc-
tures of |�2〉 experimentally. What we have to do is executing
the CPCA to obtain e1(t ), e2(t ), n̄e1 , and n̄e2 and calculating
the fourth-order moments from the dual homodyne signals
and e1(t ), e2(t ). Then, following Eqs. (45) and (52) or (54), we
can calculate f1(t ) and f2(t ) in Eq. (40). In the next section,
we will discuss the case when the analysis objects have errors
due to a lossy optical channel.

E. Effect of photon loss

We discussed pure states so far. In experiment, however,
what we can prepare is mixed states due to the coupling
between quantum states and the environment. Usually, the
most dominant error is photon loss. In this section, we show
that the analysis method discussed in Secs. II C and II D can
work even when photon loss exists.

When we treat pure states |�〉, the ( j, k) component of Ct

is given by

Ct, jk (|�〉 〈�|) = 〈�| β̂†
t j
β̂tk |�〉 = 〈�| â†

t j
âtk |�〉 + δ j,k .

(55)

The photon loss process is usually described by a beam-
splitter model. When one photon is lost with a probability p,
the mode â f is mixed with a vacuum mode â(v)

f by a beam
splitter whose transmittance is 1 − p (0 < p < 1),

Â f =
√

1 − pâ f + √
pâ(v)

f . (56)

Similarly, β̂ f in Eq. (28) is changed into B̂ f given by

B̂ f =
√

1 − pâ f + √
pâ(v1)

f − â†(v2)
f ∗ , (57)

where â(v1)
f and â†(v2)

f ∗ are vacuum terms due to the photon loss
and dual homodyne measurement. Photon loss degrades pure
states |�〉 into mixed states ρ̂, then the ( j, k) component of Ct
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in Eq. (34) is given by

Ct, jk (ρ̂) = tr
[
ρ̂B̂†

t j
B̂tk

]
= 〈

0v1

∣∣ 〈0v2

∣∣ 〈�| B̂†
t j

B̂tk |�〉 ∣∣0v1

〉 ∣∣0v2

〉
= (1 − p) 〈�| â†

t j
âtk |�〉 + δ j,k . (58)

Thus, we get

Ct (ρ̂) = (1 − p)Ct (|�〉 〈�|) + pI, (59)

where I is an M-dimensional identity matrix. When
Ct (|�〉 〈�|) is diagonalized by E , such as Eq. (36), Ct (ρ̂) is
also diagonalized by E as follows:

ECt (ρ̂)E† = diag
[
(1 − p)n̄e1 + 1, . . . , (1 − p)n̄eM + 1

]
≡ diag

[
N̄e1 + 1, . . . , N̄eM + 1

]
. (60)

Therefore, photon loss only changes {n̄e j }M
j=1 into {N̄e j }M

j=1,
and we can assume the CPCA gives the same eigenfunctions
{e j (t )}M

j=1 in the pure state case and mixed state case.
Let us discuss how photon loss affects our analysis method.

In single temporal mode state analysis, what we want is the
eigenfunction e1(t ) as explained in Sec. II C, thus photon loss
does not affect the analysis procedure.

In Sec. II D, we calculated f1(t ), f2(t ) from e1(t ), e2(t ) and
matrix D given by Eqs. (52) and (54). We can still obtain
e1(t ), e2(t ), but we need a slight modification about D. We
introduced a fourth-order moment qeiθ in Eq. (49). When
photon loss exists, what we actually obtain is given by

q′ei
 ≡ tr
[
ρ̂B̂† 2

e1
B̂2

e2

] = (1 − p)2qeiθ . (61)

Thus, the phase of the moment is not affected. Because N̄e1 +
N̄e2 = 2(1 − p), we can modify the norm of the moment,

Q ≡ 4q′(
N̄e1 + N̄e2

)2 . (62)

Then, Eqs. (52) and (54) are modified as follows:

D = 1√
N̄1/2

e1 + N̄1/2
e2

(
N̄1/4

e1
iN̄1/4

e2
e(i/2)


N̄1/4
e1

−iN̄1/4
e2

e(i/2)


)
, (63)

D =
(√

1 + √
1 − Q ∓i

√
1 − √

1 − Qei(
/2)√
1 − √

1 − Q ±i
√

1 + √
1 − Qei(
/2)

)
. (64)

We can decide the sign of Eq. (64) by the phase of another
moment tr[ρ̂B̂†2

e1
B̂e1 B̂e2 ], which is also not affected by photon

loss. Therefore, we can calculate the functions f1(t ), f2(t )
experimentally even when photon loss exists.

In this section, we showed photon loss does not affect our
TMF estimation essentially. In the next section, we briefly
summarize which states can be analyzed by the CPCA and
which states cannot be.

F. Application range of the CPCA

Here, we summarize the application range of the CPCA.
This method can deal with arbitrary non-Gaussian states in
arbitrary single temporal modes. Note that we assume vacuum
states exist in all temporal modes orthogonal to the ones
in which the target non-Gaussian states exist. The analyzed

states can be mixed states, and the TMFs are not limited to real
functions. The CPCA can also deal with arbitrary two-photon
states where each photon occupies a single temporal mode.
We can remove the effect of photon loss when we analyze
these states.

Note that there still exist many hurdles for analysis of
general multitemporal mode states. As an example, let us
consider dual temporal mode states described by TMFs
f1(t ) and f2(t ). Here, these TMFs are arbitrary complex
functions not orthogonal in general. In Secs. II D and II E,
we showed how to estimate f1(t ) and f2(t ) of two-photon
states â†

f1
â†

f2
|0̃〉. Unfortunately, the same calculation can-

not be applied to other dual temporal mode states, such
as mixed states 1

2 â†
f1

|0̃〉 〈0̃| â f1 + 1
2 â†

f2
|0̃〉 〈0̃| â f2 or entangled

states â†
f1

|0̃〉 + â†
f2

|0̃〉 + â†
f1

â†
f2

|0̃〉. Another example is mul-

titemporal mode Fock states |�n〉 ∝ â f1 â f2 · · · â fn |0̃〉, where
f1(t ), f2(t ), . . . , fn(t ) are arbitrary complex functions not or-
thogonal in general. When n = 2 we can estimate f1(t ) and
f2(t ) by solving Eqs. (47) and (50). In principle, a similar esti-
mation can be applied to |�n〉, however, it becomes difficult as
n increases to analytically solve this problem. Temporal mode
characterization of these general multitemporal mode states is
still a future work.

In the next section, we demonstrate these methods.

III. EXPERIMENT

A. Heralded creation of optical non-Gaussian states

High-purity non-Gaussian states have been created by a
heralded scheme [25–30]. In this method, entangled two
modes (idler and signal modes) are prepared, and photon
detection in the idler mode heralds non-Gaussian states in the
signal mode. So far, such states as single-photon states, super-
position of photon-number states, and Schrödinger’s cat states
have been created [25–30]. These created states are defined
in wave-packet temporal modes, called time-bin modes. The
envelopes of the wave packets give the TMF of the modes.

In this scheme, we can engineer the TMFs by the configu-
ration of the idler path. Especially, the TMFs can be complex
when we put an asymmetric Mach-Zehnder interferometer in
an idler path [11]. Therefore, the heralded creation of non-
Gaussian states using interferometers is a good way to demon-
strate the CPCA. To verify our temporal mode estimation
method, we conduct three types of heralding experiments with
an interferometer. The first one is the analysis of the time-bin
qubit as the simplest example. The second one is the analysis
of what we call the dual-rail cat qubit, a qubit consisting of
Schrödinger’s cat states. This experiment shows our method’s
ability to deal with phase-sensitive and multiphoton states in
a single temporal mode. The last one is the analysis of a time-
bin qutrit containing two photons to verify our dual temporal
mode analysis explained in Sec. II D. In the following, we
explain how these qubits and qutrits are related to our complex
TMF estimation method.

The generation of time-bin qubits and qutrits has already
been realized in Refs. [8,11]. In those studies, the idler and
signal modes are realized by a two-mode squeezed vacuum
emitted from the nondegenerate optical parametric oscillator
(OPO). One- (two-) photon detection after interferometer(s)
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in the idler mode heralds time-bin qubits (qutrits) in the signal
mode. Time-bin qubits [11] are generally recognized as two
temporal mode states where one photon is distributed in two
orthogonal time-bin modes w1 and w2. They are described as
p1 |1w1〉 + p2 |1w2〉 ≡ p1 |1w1 , 0w2〉 + p2 |0w1 , 1w2〉. Here, the
TMFs w1(t ) and w2(t ) are real functions, such as in Ref. [16].
By using Eq. (43), these states are transformed as

p1

∣∣1w1 , 0w2

〉 + p2

∣∣0w1 , 1w2

〉 = (
p1â†

w1
+ p2â†

w2

) |0̃〉
= â†

p1w1+p2w2
|0̃〉 . (65)

Thus time-bin qubits are single temporal mode single-photon
states, whose TMFs p1w1(t ) + p2w2(t ) are complex func-
tions because p1, p2 ∈ C. The CPCA can estimate this kind
of complex TMFs.

Similarly, time-bin qutrits [8], two photons distributed in
w1 and w2, are described as

q1

∣∣2w1 , 0w2

〉 + q2

∣∣1w1 , 1w2

〉 + q3

∣∣0w1 , 2w2

〉
= 1√

1 + |r∗
1 r3 + r∗

2 r4|2
â†

r1w1+r2w2
â†

r3w1+r4w2
|0̃〉 , (66)

as explained in Sec. II D. Equation (66) has the same form as
Eq. (40), thus we can estimate f1(t ) = r1w1(t ) + r2w2(t ) and
f2(t ) = r3w1(t ) + r4w2(t ), both are the complex functions.
We can decide the coefficients p1, p2 and r1, r2, r3, and r4

arbitrarily by changing the power ratio and relative phase of
the beams in two arms of the interferometer.

On top of that, we generate dual-rail cat qubits by the her-
alded scheme. Here, the signal mode is a one-mode squeezed
vacuum emitted from a degenerate OPO. The idler mode is
weakly tapped from the signal mode by a beam splitter. We
use the same interferometer as time-bin qubit experiments
in the idler path. One-photon detection in the idler mode
is recognized as a photon subtraction from the squeezed
vacuum, thus the state heralded in the signal mode is given
by (

s1âw1 + s2âw2

)
Ŝr (w1)Ŝr (w2) |0̃〉 , (67)

where a squeezing operator of a temporal mode f is given by

Ŝr ( f ) = exp
r

2

(
â† 2

f − â2
f

)
. (68)

Note that, in Eq. (67), the squeezing operation in the temporal
modes orthogonal to w1 and w2 is ignored for simplicity.
By choosing proper r, the photon-subtracted squeezed state
becomes very similar to a Schrödinger’s cat state [28]. Thus,
Eq. (67) is a qubit described by

s1

∣∣Catw1 , Squeezew2

〉 + s2

∣∣Squeezew1
, Catw2

〉
. (69)

Note that the basis states of the qubits are orthogonal because
cat states (squeezed states) have only odd (even) photon-
number components. We can decide s1, s2 ∈ C by the inter-
ferometer arbitrarily in the same way as the time-bin qubits’
case. For example, when s1 = s2 = 1/

√
2, Eq. (67) is given

by

â[(w1+w2 )/
√

2]Ŝr

(
w1 + w2√

2

)
Ŝr

(
w1 − w2√

2

)
|0̃〉 . (70)

Thus, it is a single temporal mode Schrödinger’s cat state in
(w1 + w2)/

√
2. Similar mode transformation of the squeezed

operation is seen in Ref. [31]. On the other hand, when
we consider complex temporal modes, we need to intro-
duce a two-mode squeezing operator. When s1 = 1/

√
2, s2 =

−i/
√

2, Eq. (67) is

â[(w1−iw2 )/
√

2]Ŝ
(2)
r

(
w1 + iw2√

2
,
w1 − iw2√

2

)
|0̃〉 , (71)

where a two-mode squeezing operator of orthogonal modes
f1, f2 is given by

Ŝ(2)
r ( f1, f2) = exp r

(
â†

f1
â†

f2
− â f1 â f2

)
. (72)

In the photon-number basis, Eq. (71) is given by [32]

â[(w1−iw2/
√

2)]

1

cosh r

∞∑
n=0

(tanh r)n

∣∣n[(w1+iw2 )/
√

2], n[(w1−iw2 )/
√

2]

〉
= 1

cosh r

∞∑
n=0

√
n + 1(tanh r)n+1

∣∣n + 1[(w1+iw2 )/
√

2], n[(w1−iw2 )/
√

2]

〉
. (73)

When r → ∞, the created state is a photon-subtracted
Einstein-Podolsky-Rosen (EPR) state. Subtraction makes the
average photon number larger in (w1 − iw2)/

√
2 and espe-

cially in (w1 + iw2)/
√

2. This is a kind of entanglement
purification similar to Ref. [33].

The modes (w1 + iw2)/
√

2 and (w1 − iw2)/
√

2 are or-
thogonal and satisfy〈

β̂
†
[(w1+iw2 )/

√
2]
β̂[(w1−iw2 )/

√
2]

〉
= 〈

β̂
†
[(w1−iw2 )/

√
2]
β̂[(w1+iw2 )/

√
2]

〉 = 0. (74)

Therefore, it is expected that the CPCA gives e1(t ) =
[w1(t ) + iw2(t )]/

√
2 and e2(t ) = [w1(t ) − iw2(t )]/

√
2.

B. Experimental setup

The schematic of time-bin qubit and qutrit generation is
shown in Fig. 3. This setup is the same as Refs. [8,11]. The
light source of the experiment is a cw Ti:sapphire laser whose
wavelength is 860 nm. A bow tie-shaped nondegenerate OPO
is used to generate two-mode squeezed vacuum states. The
cavity of the OPO has 16 MHz of full width at half maximum
and 600 MHz of free spectrum range (FSR). Inside the cavity,
a 10-mm length periodically poled KTiOPO4 crystal is placed
as a nonlinear optical medium. The pump beam of the OPO
is produced from a SHG, which consists of a bow tie-shaped
cavity and a 10-mm length KNbO3 crystal. The pump beam is
given a 600-MHz (one FSR) frequency shift by an AOM.

Signal and idler modes of the two-mode squeezed vacuum
states have different frequencies and are divided into two
optical paths by a splitting cavity. The idler mode passes
through two Fabry-Pérot filter cavities to filter out unwanted
nondegenerate modes. When the OPO is weakly pumped,
photon detection by a silicon APD in the idler mode heralds
single-photon states in the signal mode. In order to create
time-bin qubits, we construct an asymmetric Mach-Zehnder
interferometer between the filter cavities and the APD. The
idler field in the longer arm of the interferometer is a given
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FIG. 3. Experimental setup for the heralded creation of
time-bin qubits p1 |1w1 , 0w2 〉 + p2 |0w1 , 1w2 〉 and time-bin qutrits
q1 |2w1 , 0w2 〉 + q2 |1w1 , 1w2 〉 + q2 |0w1 , 2w2 〉. Ti:sapphire denotes a
titanium sapphire laser, second-harmonic generator (SHG), mode
cleaning cavity (MCC), acousto-optical modulator (AOM), nonde-
generate optical prametric oscillator (NOPO), splitting cavity (SC),
filter cavity (FC), avalanche photodiode (APD), LO, and homodyne
detector (HD). In the photon-subtraction experiments, the AOM is
removed, and the SC is replaced by a 97% reflection beam splitter in
the time-bin qubit generation setup.

time delay against the idler field in the shorter arm, thus
time-shifted idler fields interfere before photon detection.
This interference enables the photon detection by an APD to
herald time-bin superposition states. The longer arm of the
interferometer is implemented by an about a 50-m optical
fiber, which is long enough to regard the heralded two time
bins as orthogonal. Arbitrary time-bin qubits can be created
by changing the power ratio and relative phase of two beams
in the interferometer. In the case of the creation of time-bin
qutrits, we combine two asymmetric Mach-Zehnder interfer-
ometers and two APDs. In this case, simultaneous photon
detection at two APDs heralds time-bin qutrits in the signal
mode.

In dual-rail cat qubit generation, we remove the AOM to
use the OPO as a degenerate OPO to generate one-mode
squeezed vacuum. The splitting cavity is replaced by a 97%
reflection beam splitter. The interferometer in the idler path is
same as the time-bin qubit setup. We generate single temporal
mode Schrödinger’s cat states and photon-subtracted EPR
states by changing the relative phase of the beams in the two
arms of the interferometer.

All these created states are detected by the cw dual
homodyne measurement. The transversal mode of the LO
beams for the homodyne measurement is set to TEM00 by
a bow tie-shaped mode cleaning cavity. The sampling rate
of data acquisition is 1 GHz, and one data frame contains
1500 points (T = 1.5 μs, M = 1500). Each state is measured
20 000 times to construct the matrix Ct introduced in Eq. (34).
In this case, Ct is a (1500 × 1500)-dimensional matrix. Mea-
sured values are filtered by a second-order LC high-pass filter
and a digital low-pass filter to filter out the effect of high

signal noise at dc and gain peaking of homodyne detectors
at high frequencies. The cutoff frequencies are 100 kHz and
14.3 MHz, respectively.

Theoretically, the time-bin TMF has the double-decaying
exponential profile

√
γ e−γ |t | where γ = 1.1 × 108/s is a

Fourier counterpart of OPO’s Lorentzian frequency spec-
trum [12]. The low-pass filter effect of two filter cavities
and a digital filter make the actual TMF w(t ) to be round
shaped [34]. On top of that, a 50-m optical fiber makes time-
shifted superposition of two time-bin modes w1(t ) and w2(t ),
where w2(t ) = w1(t − �t ), �t ≈ 250 ns. This time delay is
enough to assume that these two modes are orthogonal, con-
sidering the exponential decay of the function w(t ) given by
γ . We estimate the mode functions seen in Eqs. (65) and (66),
thus experimental results are expected to be superposition of
w1(t ) and w2(t ) as you can see in the next section.

C. Results

1. Time-bin qubit and dual-rail cat qubit

We show the analysis results of two types of time-bin
qubits given by

|φ1〉 = 1√
2

( ∣∣1w1 , 0w2

〉 + ∣∣0w1 , 1w2

〉 ) = â†
[(w1+w2 )/

√
2]

|0̃〉 ,

(75)

|φ2〉 = 1√
2

( ∣∣1w1 , 0w2

〉 + i
∣∣0w1 , 1w2

〉 ) = â†
[(w1+iw2 )/

√
2]

|0̃〉 ,

(76)

and two types of dual-rail cat qubit given by

|φ3〉 = 1√
2

∣∣Catw1 , Squeezew2

〉 + 1√
2

∣∣Squeezew1
, Catw2

〉

∝ â[(w1+w2 )/
√

2]Ŝr

(
w1 + w2√

2

)
Ŝr

(
w1 − w2√

2

)
|0̃〉 , (77)

|φ4〉 = 1√
2

|Catw1 , Squeezew2
〉 − i√

2
|Squeezew1

, Catw2〉

∝ â[(w1−iw2 )/
√

2]Ŝ
(2)
r

(
w1 + iw2√

2
,
w1 − iw2√

2

)
|0̃〉 . (78)

Figure 4 shows the CPCA results of those four states. The left
row shows the first 50 eigenvalues of Ct , that is, {N̄e j + 1}50

j=1.
You can see that the first eigenvalue is outstanding in each
case. Other eigenvalues, which correspond to thermal states
about |φ1〉 , |φ2〉 and squeezed states about |φ3〉 , |φ4〉, are
slightly larger than vacuum states. Due to the digital low-pass
filter, those modes containing high-frequency components
have small eigenvalues. It follows that the eigenvalues go
below 1 as the mode index increases.

The middle row of Fig. 4 shows e1(t ) plotted in real lines.
The blue (dark gray) and orange (light gray) lines correspond
to real and imaginary parts of e1(t ). We can see that e1(t )
consists of two time bins [w1(t ) and w2(t )]. The first time bins
appear in the real part, and the second time bins appear in the
real or imaginary part of e1(t ). These represent the relative
phases of the superposition of two time bins. As for |φ1〉 and
|φ2〉, we show the theoretical predictions in the broken lines.
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FIG. 4. Analysis results of |φ1〉 to |φ4〉. Left: First 50 eigenvalues of matrix Ct are shown in the red (dark gray) bar, and the vacuum state
is shown in light blue (light gray). Middle: The first eigenfunctions e1(t ) are shown in real lines. The blue (dark gray) and orange (light gray)
lines show the real and imaginary parts of e1(t ), respectively. As for |φ1〉 and |φ2〉, theoretical predictions are shown in the broken lines. Right:
Wigner functions and photon-number distributions of e1.

The experimental results capture the features of theoretical
predictions well. Table I shows theoretically expected TMFs,
the mode match of the experimental results, and the theoret-

TABLE I. Left row: analyzed states. Middle row: theoretically
expected TMFs. Right row: mode match between estimated TMFs
and theoretical predictions.

State Expected TMF Mode match

|φ1〉 e1(t ) ∝ w1(t ) + w2(t ) 0.863
|φ2〉 e1(t ) ∝ w1(t ) + iw2(t ) 0.912
|φ3〉 e1(t ) ∝ w1(t ) + w2(t ) 0.862
|φ4〉 e1(t ) ∝ w1(t ) + iw2(t ) 0.913

e2(t ) ∝ w1(t ) − iw2(t ) 0.630
|φ5〉 f1(t ) ∝ w1(t ) + iw2(t ) 0.956

f2(t ) ∝ w1(t ) − iw2(t ) 0.946
|φ6〉 f1(t ) ∝ w1(t ) + ei(π/4)w2(t ) 0.827

f2(t ) ∝ w1(t ) + e−i(π/4)w2(t ) 0.870

ical predictions. The mode matches are reasonably high, but
some mismatch comes from mainly two reasons. One is the
imperfection of the interferometer in the idler path. The mode
match goes down when the power ratio or phase of the beams
in the two arms of the interferometer are not set correctly. The
other reason is the effect of high-pass filter after the homodyne
detectors. Especially in |φ1〉 and |φ3〉, you can see that the long
tail of the time bin due to the filter makes the mode match
worse.

The right row of Fig. 4 shows Wigner functions and
photon-number distributions of temporal mode e1. Wigner
functions have negative values, thus these states are non-
Gaussian states having high nonclassicality. |φ1〉 and |φ2〉
have more than 60% single-photon components, and their
Wigner functions have rotational symmetry. Thus, they are
high-purity single-photon states as expected. The Wigner
functions of |φ3〉 are squeezed in the p direction and not
rotationally symmetric, which is one prominent feature of
Schrödinger’s cat state. From Eq. (73), |φ4〉 is a mixed state of
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FIG. 5. (a) Second eigenfunction e2(t ) of |φ3〉 and |φ4〉. (b) Two-mode photon-number distribution about e1 and e2. Red (dark gray) bars
show expected photon-number correlation of |φ4〉.

|1e1〉 , |2e1〉 , . . . in e1, thus their Wigner function is expected
to be rotationally symmetric. Actually their Wigner function
is rotationally symmetric. These results confirm that the ex-
periments have been carried out successfully.

Figure 5(a) shows e2(t ) of |φ3〉 and |φ4〉 . e2(t ) of |φ3〉 has a
fluctuating wave form. It is chosen to have the largest average
photon number in background squeezed states. On the other
hand, e2(t ) of |φ4〉 consists of two time bins as explained
in Eq. (73). In this case, however, the wave form is a little
vague, and the mode match is not so high compared to other
cases as shown in Table I. This may be because N̄e2 is only
slightly larger than N̄e3 , thus it becomes difficult to separate
the expected mode from the background. As Eq. (73) tells,
the temporal modes e1 and e2 of |φ4〉 are entangled. You
can see the photon-number correlation given by |n + 1e1〉 |ne2〉
in two-mode photon-number distribution about e1 and e2

in Fig. 5(b). The correlation coefficient of ne1 and ne2 is
r = 0.498. On the other hand, |φ3〉 has little photon-number
correlation between e1 and e2 (r = −0.015) as shown in
Fig. 5(b).

These results show that the CPCA can access the complex
TMFs of various single temporal mode non-Gaussian states.

2. Results of time-bin qutrit experiments

We analyze two types of time-bin qutrits given by

|φ5〉 = 1√
2

( ∣∣2w1 , 0w2

〉 + ∣∣0w1 , 2w2

〉 )
= â†

[(w1+iw2 )/
√

2]
â†

[(w1−iw2 )/
√

2]
|0̃〉 , (79)

|φ6〉 = 1√
3

( ∣∣2w1 , 0w2

〉 + ∣∣1w1 , 1w2

〉 + ∣∣0w1 , 2w2

〉 )
= â†

{[w1+ei(π/4)w2]/
√

2}â
†
{[w1+e−i(π/4)w2]/

√
2} |0̃〉 . (80)

We can calculate f1(t ) and f2(t ) of these dual temporal
mode two-photon states by the CPCA results in the way
explained in Sec. II D. Figure 6 is the analysis result showing
calculated f1(t ), f2(t ), Wigner functions, and photon-number
distributions of those modes. The theoretical TMFs and mode
match are written in Table I. Note that, in the ideal case,
|φ5〉 satisfies 〈 f1, f2〉 = 0 and N̄e1 = N̄e2 , thus we should use
Eq. (64) to calculate f1(t ) and f2(t ). However, imperfection of
experimental conditions makes N̄e1 > N̄e2 . Thus, we calculate
f1(t ), f2(t ) using Eq. (63) for both |φ5〉 and |φ6〉.

FIG. 6. Estimated f1(t ), f2(t ) of time-bin qutrits |φ5〉 and |φ6〉. Wigner function and photon-number distribution of each modes are also
shown.
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Photon-number distributions in Fig. 6 have larger weight in
two-photon distribution compared to time-bin qubits in Fig. 4.
One reason is that f1(t ) and f2(t ) are not orthogonal with inner
product | 〈 f1, f2〉 | = 0.046 for |φ5〉 and | 〈 f1, f2〉 | = 0.475
for |φ6〉. This means that some components in mode f1 are
mixed into the mode f2 and vice versa. This leads to larger
multiphoton components in each mode. Another reason is that
the two-mode squeezed vacuum contains larger multiphoton
components than the time-bin qubit’s case because we use
higher pumping condition to have enough of a count rate of
simultaneous photon detection at two APDs. Like above, we
can analyze arbitrary time-bin qutrits in the way introduced in
Sec. II D.

We analyzed experimentally created time-bin qubits, dual-
rail cat qubits, and time-bin qutrits. These results show that the
CPCA method enables us to access complex temporal mode
structures of optical non-Gaussian states.

IV. CONCLUSION

We introduced the CPCA, a method to estimate complex
TMFs of optical non-Gaussian states. It is based on prin-
cipal components’ analysis of complex variables given by

continuous-wave dual-homodyne measurement. The CPCA
can deal with not only arbitrary non-Gaussian states in single
temporal modes, but also arbitrary two-photon states where
each photon occupies a single temporal mode, which previous
methods cannot deal with. We showed that our scheme works
in actual situation by analyzing several experimentally non-
Gaussian states. The CPCA needs only simple experimental
setup, two homodyne detectors, and a continuous-wave local
oscillator beam having one frequency. The analysis procedure
is also simple; it is basically just a diagonalization of a matrix.
Due to the simplicity and capability to characterize a wide
range of quantum states, our method is a powerful tool in state
creation experiments. Estimated TMFs reflect the imperfec-
tion of experiments, thus we can utilize the created states with
high purity. This achievement would lead to optimization of
quantum communication and quantum computation systems.
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